Product Description

                                    Custom Design Flexible Shaft Coupling Cross Slide Coupling

 

Service CNC Machining
Turning and Milling
CNC Turning
OEM Parts
Material 1). Aluminum: AL 6061-T6, 6063, 7075-T etc
2). Stainless steel: 303,304,316L, 17-4(SUS630) etc
3). Steel: 4140, Q235, Q345B,20#,45# etc.
4). Titanium: TA1,TA2/GR2, TA4/GR5, TC4, TC18 etc
5). Brass: C36000 (HPb62), C37700 (HPb59), C26800 (H68), C22000(H90) etc
6). Copper, bronze, Magnesium alloy, Delrin, POM,Acrylic, PC, etc.
Finish Sandblasting, Anodize color, Blackenning, Zinc/Nickl Plating, Polish, 
Power coating, Passivation PVD, Titanium Plating, Electrogalvanizing,
electroplating chromium, electrophoresis, QPQ(Quench-Polish-Quench),
Electro Polishing,Chrome Plating, Knurl, Laser etch Logo, etc.
Main Equipment CNC Machining center(Milling), CNC Lathe, Grinding machine, 
Cylindrical grinder machine, Drilling machine, Laser Cutting Machine,etc.
Drawing format STEP,STP,GIS,CAD,PDF,DWG,DXF etc or samples. 
Tolerance +/-0.01mm ~ +/-0.05mm
Surface roughness Ra 0.1~3.2
Inspection Complete inspection lab with Micrometer, Optical Comparator, Caliper Vernier,CMM
Depth Caliper Vernier, Universal Protractor, Clock Gauge, Internal Centigrade Gauge
Capacity CNC turning work range: φ0.5mm-φ150mm*300mm
CNC milling work range: 510mm*1571mm*500mm

       Features of jaw coupling:

      1.Easy of inspection,easy maintenance.

      2.Can absorb vibration,parallel,angular and axial misalignments. 

      3.Identical clockwise and anticlockwise rotational charateristics.

      4.Both ends material is iron, intermediate for rubber materials.

      5.Simple configuration, setscrew type,low price.

      6.Hole can be self-processing,easy facilitate.

      7.For step motor,screw, machine positioning system.

     The SL cross slide coupling is slid in the corresponding radial grooves of the large end faces
     of the half couplings on both sides.
     The main feature of the slider coupling is that it allows the 2 shafts to have a large radial
     displacement, and allows for small angular displacement and axial displacement. Due to the
     centrifugal force generated by the eccentric motion of the slider, it is not suitable to use this
     coupling. High-speed movement, the coupling torque of the coupling is 120-63000N.m, the
     speed is 250-70r/min.

     Inspections:
     3D instruments, 2D instruments, Projectors, Height Gauges, Inner diameter dial indicators, Dial gaues, Thread 
     and Pin gauges, Digital calipers,Micro calipers, Thickness testers, Hardness testers Roughness testers, etc.
      ( Detection accuracy to 0.001 millimetre )

 

     Advantages:

     Protects driven component by serving as a mechanical “fuse” – an inexpensive replaceable plastic
     midsection shears under excess load.
     Protects support bearings by exerting consistently low reactive forces, even under large misalignments.
     Homokinetic transmission – driving and driven shafts rotate at exactly the same speed at all times.
     Zero backlash and high torsional stiffness.
     Accommodates large radial misalignment in a short length.
     Easy installation in blind or difficult installations when through-bores are used.
     Economically priced compared to other couplings with similar performance characteristics.

     CNC machining parts, metal machining parts, precision machining parts, Machined parts, Machinery 
     parts,Machine Parts,machining parts machining,Cnc machining parts machinery parts,machined 
     parts,precision machining parts,oem machining parts,cnc machining parts,cnc machined parts.

               Q: Why choose Shengao product?
               A: We shengao have our own plant– HangZhou Shengao machinery Co.,Ltd, therefore, we can 
               surely promise the quality of every product and provide you comparable price.

               Q: Do you provide OEM Service?
               A: Yes, we provide OEM Service.

               Q: Do you provide customized machining parts?
               A: Yes. Customers give us drawings and specifications, and we will manufact accordingly.

               Q: What is your payment term?
               A: We provide kinds of payment terms such as L/C, T/T, Paypal, Escrow, etc.

               If there’s anything we can help, please feel free to contact with us. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

What are the maintenance-free options available for flexible couplings?

Several maintenance-free options are available for flexible couplings, designed to reduce or eliminate the need for regular maintenance and lubrication. These options offer long-lasting performance and reliability while minimizing downtime and operational costs. Below are some maintenance-free options for flexible couplings:

1. Maintenance-Free Elastomeric Couplings: Elastomeric couplings with a specific design and materials can be maintenance-free. These couplings often incorporate high-quality elastomeric elements that do not require periodic lubrication. The elastomeric material provides damping of shocks and vibrations and allows for misalignment compensation, making them suitable for various applications without the need for regular maintenance.

2. Non-Lubricated Metallic Couplings: Some metallic couplings are designed to operate without the need for lubrication. These couplings use self-lubricating materials or specialized coatings that reduce friction between moving parts, eliminating the need for manual lubrication. They can handle high torque and speed requirements while providing reliable performance over extended periods without maintenance.

3. Pre-Lubricated Couplings: Certain flexible couplings come pre-lubricated during manufacturing. These couplings have grease or lubricant already applied to the critical components, providing sufficient lubrication for an extended period of operation. As a result, users do not need to perform regular lubrication maintenance, reducing maintenance tasks and associated costs.

4. Sealed Couplings: Some flexible couplings are designed with integrated seals or shields that protect internal components from contaminants and prevent lubricant leakage. These sealed couplings are inherently maintenance-free, as they ensure long-lasting performance without the need for external maintenance or re-lubrication.

5. Non-Wearing Materials: Certain flexible couplings are constructed using non-wearing materials, such as high-performance polymers. These materials offer excellent resistance to wear and abrasion, reducing the need for maintenance and replacement due to wear-related issues.

6. Torque-Responsive Couplings: Some maintenance-free couplings are designed to disengage or slip when the torque exceeds a certain threshold. This feature protects the connected equipment from excessive loads, preventing damage and reducing the need for maintenance or repairs caused by overload conditions.

Summary: Maintenance-free options for flexible couplings are available, offering reliable and long-lasting performance without the need for regular maintenance and lubrication. These couplings utilize specialized materials, designs, and features to handle various operating conditions while minimizing downtime and operational costs. Selecting a maintenance-free coupling that suits the specific application requirements can significantly improve the overall efficiency and reliability of the mechanical system.

flexible coupling

What are the differences between flexible couplings and rigid couplings in terms of performance?

Flexible couplings and rigid couplings are two distinct types of couplings used in mechanical systems, and they differ significantly in terms of performance and applications.

  • Torsional Flexibility: The primary difference between flexible and rigid couplings lies in their ability to handle misalignments and torsional flexibility. Flexible couplings are designed with elements, such as elastomeric inserts or metal bellows, that can deform or twist to accommodate shaft misalignments, angular offsets, and axial movements. On the other hand, rigid couplings do not have any flexibility and maintain a fixed connection between the shafts, which means they cannot compensate for misalignment.
  • Misalignment Compensation: Flexible couplings can absorb and mitigate misalignment between shafts, reducing stress and wear on connected components. In contrast, rigid couplings require precise alignment during installation, and any misalignment can lead to increased loads on the shafts and bearings, potentially leading to premature failure.
  • Vibration Damping: Flexible couplings, especially those with elastomeric elements, offer damping properties that can absorb and dissipate vibrations. This damping capability reduces the transmission of vibrations and shocks through the drivetrain, improving the overall system performance and protecting connected equipment. Rigid couplings, being solid and without damping elements, do not provide this vibration damping effect.
  • Backlash: Flexible couplings can have some degree of backlash due to their flexibility, particularly in certain designs. Backlash is the play or free movement between connected shafts. In contrast, rigid couplings have minimal or no backlash, providing a more precise and immediate response to changes in rotational direction.
  • Torque Transmission: Rigid couplings are more efficient in transmitting torque since they do not have any flexible elements that can absorb some torque. Flexible couplings, while capable of transmitting substantial torque, may experience some power loss due to the deformation of their flexible components.
  • Applications: Flexible couplings are widely used in applications that require misalignment compensation, damping, and shock absorption, such as pumps, motors, and industrial machinery. On the other hand, rigid couplings are used in situations where precise alignment is critical, such as connecting shafts of well-aligned components or shafts that require synchronous operation, like in some encoder applications.

In summary, flexible couplings excel in applications where misalignment compensation, vibration damping, and shock absorption are required. They are more forgiving in terms of alignment errors and can accommodate dynamic loads. Rigid couplings, on the other hand, are used in situations where precise alignment and zero backlash are essential, ensuring direct and immediate power transmission between shafts.

flexible coupling

Can flexible couplings be used in both horizontal and vertical shaft arrangements?

Yes, flexible couplings can be used in both horizontal and vertical shaft arrangements. The design of flexible couplings allows them to accommodate misalignment and compensate for angular, parallel, and axial displacements between the shafts, making them suitable for various shaft orientations.

Horizontal Shaft Arrangements:

In horizontal shaft arrangements, where the shafts are parallel to the ground or horizontal plane, flexible couplings are commonly used to connect two rotating shafts. These couplings help transmit torque from one shaft to another while accommodating any misalignment that may occur during operation. Horizontal shaft arrangements are common in applications such as pumps, compressors, conveyors, and industrial machinery.

Vertical Shaft Arrangements:

In vertical shaft arrangements, where the shafts are perpendicular to the ground or vertical plane, flexible couplings are also applicable. Vertical shafts often require couplings that can handle the additional weight and forces resulting from gravity. Flexible couplings designed for vertical applications can support the weight of the rotating equipment while allowing for some axial movement to accommodate thermal expansion or other displacements. Vertical shaft arrangements are commonly found in applications such as pumps, gearboxes, turbines, and some marine propulsion systems.

Considerations for Vertical Shaft Arrangements:

When using flexible couplings in vertical shaft arrangements, there are a few additional considerations to keep in mind:

  • Thrust Load: Vertical shafts can generate thrust loads, especially in upward or downward direction. The flexible coupling should be selected based on its capacity to handle both radial and axial loads to accommodate these forces.
  • Lubrication: Some vertical couplings may require additional lubrication to ensure smooth operation and reduce wear, particularly if they are exposed to high axial loads or extended vertical shafts.
  • Support and Bearing: Proper support and bearing arrangements for the vertical shaft are essential to prevent excessive shaft deflection and ensure the flexible coupling functions correctly.

Overall, flexible couplings are versatile and adaptable to various shaft orientations, providing efficient power transmission and misalignment compensation. Whether in horizontal or vertical arrangements, using the appropriate flexible coupling design and considering the specific application requirements will help ensure reliable and efficient operation.

China Good quality Custom Design Flexible Shaft Coupling Cross Slide Coupling  China Good quality Custom Design Flexible Shaft Coupling Cross Slide Coupling
editor by CX 2024-03-11