Product Description

Universal Wide Range Flexible Ductile Iron Straight Coupling

 

MATERIALS
ITEM PARTS MATERIAL
1 Body BSEN1563 EN-GJS(QT)-450-10/Carbon Steel
2 Gland BSEN1563 EN-GJS(QT)-450-10
3 Seals EPDM/NBR
4 Fasteners Stainless Steel/Carbon Steel with Dacromet Coating/GAL Carbon Steel
5 Coating Fusion Bonded Epoxy

DIMENSIONS(PN10/PN16)
DN RANGE L L1 H ID ID1 OD N-MSXL1 BOLT TORQUE WIGHT(KG)
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (Nm)
50 59-72 188 148 95 72 76 153 4-M12*180 55-65 4.1
65 72-85 188 148 95 85 89 173 4-M12*180 55-65 4.1
80 88-103 188 146 95 103 107 185 4-M12*180 55-65 4.1
100 109-128 188 146 95 127 132 208 4-M12*180 55-65 4.6
125 138-153 198 153 95 158 162 256 4-M12*190 55-65 8.3
150 159-182 198 153 95 182 186 280 4-M12*190 55-65 8.5
175 189-212 233 187 130 211 216 329 4-M12*225 55-65 9.0 
200 218-235 233 187 130 234 239 333 4-M12*225 55-65 10.6
225 242-262 233 185 130 261 265 379 6-M12*225 55-65 14.5
250 272-289 233 186 130 288 295 391 6-M12*225 55-65 15.4
300 315-349 233 187 130 349 352 464 6-M12*225 55-65 20.0 
322-339 233 187 130 338 345 444 6-M12*225 55-65 23.1
338-360 233 187 130 359 366 460 6-M12*225 55-65 23.1
350 351-391 250 187 130 390 395 502 10-M12*225 55-65 26.8
400 400-442 250 187 130 441 446 558 10-M12*225 55-65 31.9
450 455-493 250 187 130 492 497 608 10-M12*225 55-65 36.6
500 500-599 250 187 130 598 594 662 10-M12*225 55-65 40.0 
600 600-692 250 187 130 691 697 768 10-M12*225 55-65 42.0 
700 708-780 250 187 130 779 785 910 10-M12*225 55-65 45.0 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

How does a flexible coupling help in power transmission efficiency?

Flexible couplings play a crucial role in improving power transmission efficiency in various mechanical systems. Here are the ways in which flexible couplings contribute to enhanced efficiency:

  • Misalignment Compensation: In real-world applications, it is challenging to achieve perfect alignment between shafts due to manufacturing tolerances, thermal expansion, or external forces. Flexible couplings can accommodate both angular and parallel misalignments between the driving and driven shafts. By doing so, they ensure that the torque is transmitted smoothly and efficiently despite misalignment, reducing power losses due to misaligned shafts.
  • Vibration Damping: Vibrations in mechanical systems can lead to energy losses and premature wear of components. Flexible couplings with vibration-damping properties can absorb and dampen vibrations generated during operation. By reducing the transmission of vibrations, these couplings help to maintain power transmission efficiency and extend the lifespan of connected equipment.
  • Shock Load Absorption: During start-up or sudden changes in operating conditions, equipment may experience shock loads. Flexible couplings are designed to absorb and cushion these shock loads, preventing sudden impacts on the system. By minimizing the shock load’s effect, flexible couplings contribute to smoother power transmission and reduced stress on components.
  • Torsional Stiffness: While flexible couplings allow for misalignment compensation, they still exhibit a certain degree of torsional stiffness. This stiffness ensures that the majority of the torque is efficiently transmitted from the driving to the driven shaft, minimizing power losses due to deformation or bending of the coupling.
  • Reduced Friction and Wear: Flexible couplings typically have a simple design with fewer moving parts. This simplicity leads to reduced friction and wear compared to more complex coupling types. Lower friction means less energy dissipation, resulting in improved power transmission efficiency.
  • Compatibility with Various Applications: Flexible couplings come in a wide range of designs and materials to suit different applications. Whether it’s high-speed machinery, heavy-duty equipment, or precision systems, there are flexible coupling options optimized for each use case. Selecting the appropriate coupling for the specific application ensures efficient power transmission.

In summary, flexible couplings enhance power transmission efficiency by compensating for misalignment, damping vibrations, absorbing shock loads, providing torsional stiffness, reducing friction and wear, and offering compatibility with diverse applications. The combination of these features contributes to improved overall system efficiency and helps optimize the performance of mechanical systems.

flexible coupling

Can flexible couplings be used in marine and automotive applications?

Yes, flexible couplings are commonly used in both marine and automotive applications. They offer various advantages that make them suitable for these industries:

  • Misalignment Compensation: In marine and automotive systems, there can be misalignments due to factors such as hull flexing in marine vessels or engine movements in vehicles. Flexible couplings can accommodate these misalignments, ensuring efficient power transmission between the engine and the propeller or wheels.
  • Vibration Damping: Both marine and automotive environments experience vibrations from engines, propellers, or road conditions. Flexible couplings help dampen these vibrations, reducing wear on components and enhancing the comfort of passengers or crew members.
  • Shock Load Absorption: Marine vessels and vehicles can encounter shock loads during operation, especially in rough sea conditions or uneven terrains. Flexible couplings can absorb and dissipate the impact of these shock loads, protecting the drivetrain and transmission components.
  • Compact Design: Space is often limited in marine vessels and automotive systems. Flexible couplings come in various compact designs, making them suitable for applications with restricted installation space.
  • Corrosion Resistance: Marine environments expose components to corrosive seawater, while automotive systems may encounter exposure to road salt and other corrosive substances. Flexible couplings made from corrosion-resistant materials, such as stainless steel or non-metallic compounds, are ideal for these applications.
  • Easy Maintenance: Flexible couplings with self-lubricating features or low maintenance requirements are well-suited for marine and automotive applications, where regular maintenance can be challenging.
  • High Torque Capacity: Automotive systems, especially in heavy-duty vehicles, require couplings that can handle high torque levels. Flexible couplings designed for automotive use offer high torque capacity and reliability.

Overall, the adaptability, vibration damping, and misalignment compensation provided by flexible couplings make them suitable for various marine and automotive applications. Whether used in boats, yachts, ships, cars, trucks, or other vehicles, flexible couplings contribute to smooth and reliable power transmission, leading to improved performance and reduced maintenance requirements.

flexible coupling

Can flexible couplings handle misalignment between shafts?

Yes, flexible couplings are specifically designed to handle misalignment between shafts in rotating machinery and mechanical systems. Misalignment can occur due to various factors, including installation errors, thermal expansion, manufacturing tolerances, or shaft deflection during operation.

Flexible couplings offer the ability to compensate for different types of misalignment, including:

  • Angular Misalignment: When the shafts are not collinear and have an angular offset, flexible couplings can accommodate this misalignment by flexing or twisting, allowing the two shafts to remain connected while transmitting torque smoothly.
  • Parallel Misalignment: Parallel misalignment occurs when the two shafts are not perfectly aligned along their axes. Flexible couplings can adjust to this misalignment, ensuring that the shafts remain connected and capable of transmitting power efficiently.
  • Axial Misalignment: Axial misalignment, also known as end float or axial displacement, refers to the relative axial movement of the two shafts. Some flexible coupling designs can accommodate axial misalignment, allowing for slight axial movements without disengaging the coupling.

The ability of flexible couplings to handle misalignment is essential in preventing premature wear and failure of the connected equipment. By compensating for misalignment, flexible couplings reduce the stress on the shafts, bearings, and seals, extending the service life of these components and improving overall system reliability.

It is crucial to select the appropriate type of flexible coupling based on the specific misalignment requirements of the application. Different coupling designs offer varying degrees of misalignment compensation, and the choice depends on factors such as the magnitude and type of misalignment, the torque requirements, and the operating environment.

In summary, flexible couplings play a vital role in handling misalignment between shafts, ensuring efficient power transmission and protecting mechanical systems from the adverse effects of misalignment. Their ability to accommodate misalignment makes them indispensable components in various industrial, automotive, aerospace, and marine applications.

China Good quality DIN BS Universal Wide Range Flexible Ductile Iron Straight Coupling  China Good quality DIN BS Universal Wide Range Flexible Ductile Iron Straight Coupling
editor by CX 2024-04-03