Product Description

Product description 

Material

 Materials for silicon,fluorine,NBR,FPM,EPDM,SILCONE ACM,HNBR
Inspection Equipments  Excellent chemical and physical property, excellent oil- resistance, high temperature stability, etc.
Tolerance  +/-0.05mm
Drawing Format  PDF/DWG/DXF/IGS/STEP,etc
Application field  Parts are used on vehicles, printing machines, food processing machines, textile machines, electronic machines, etc.
Manufacturing  process  CNC machining Broaching, Drilling, Milling, Other Machining Services, Rapid Prototyping, Turning,
Shape  As per your drawing Or your sample
Color service   Customization
QC inspection

 Make sure 100% inspection before the delivery

Advantages Maintenance,acturally HRC coupling doesn’t need maintenance.
Environmental, elastic components make HRC coupling applies to a variety of working conditions.

Reliable transmission, in case of elastic component is damaged, the dog segment wichcasted siamesedly still keep the transmission processing reliably.

Economic, HRC couplings have already been made of optimization design,which make transmission power match the transmission shaft diameter.

Good recovery capacity, elastic components can reduce the load at the CHINAMFG moments, and the deviation is a major consideration when designing.

Adaptability of misalignment, HRC can coupling contains parallel shift, angle shift and axis shift which happen some times.

Application and analysis

Our warehouse

Custom rubber parts

Custom plastic parts

Packing & Delivery

Packaging Details: plastic bag packing inside, carton packing outside, or customized packing.
Port:Xihu (West Lake) Dis.g port, ZheJiang city.
Lead Time :

Quantity(Pieces) 1 – 1000 1001 – 10000 10001 – 50000 >50000    
Est. Time(days) 5 12 18 To be negotiated  

 

Place order steps

Our Services:

1. Convenient: 24th Hours sales/After-sales Service online or on the phone.

2. Quality Assurance: We will discuss with you and supply you the best quality comfortable to your market.

3. Quick delivery: Time is money, we promise we always will deliver the goods quicker than others.

4. According to customers’ drawing,customized specifications are welcomed.

5. Small orders can be accepted.

Packing

Company Profile

SHEN ZHOU CHINAMFG RUBBER & PLASTIC CO.,LTD was founded in 2000. The factory located in industrial zone of HangZhou city, ZheJiang province, china.

We have Plastic injection molding workshop and rubber compression molding workshops.Our main products includes Bakelit Knobs,Pull Handle,rubber door stops, door guard, roller, rubber bumpers, Rubber grommets, vibration dampers, seals, plastic corner, injection plastic brackets, injection plastic shell.to undertake various kinds of rubber molding and plastic injection parts, customize according to drawing and samples. 

The products have been exported to America, Europe, Oceania, Middle East, Southeast Asia and other regions and countries, and hope to build more business Cooperation with new client from all over the world.

FAQ

Q1: Are you a manufacturer or a trading company?

A1: We are the original manufacturer of custom rubber parts and custom plastic parts.

Q2: Where is your company located?

A2: Our company is located in HangZhou City, ZheJiang Province, China.

Q3: Could I get free samples?

A3: We could provide small samples for free, but air freight or sea freight should be borne by customer side.

Q4: What should I provide in order to get an offer?

A4: Customers are required to provide material, inner diameter, outer diameter, cross section distance and quantity.

Q5: How is the goods packed by your factory?

A5: The goods are normally packed by plastic bags, carton boxes with pallets or wooden boxes.

Q6: What are the incoterms applied?

A6: The incoterms applied are FOB, CIF and CFR.

Q7: What are the payment terms accepted?

A7: We accept Alibaba Trade Assurance, T/T, L/C and West Union.

Q8: What about the delivery time?

A8: The goods are normally dellivered to customer side within 7-30 days based CHINAMFG the mode of transport required.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

What are the common installation mistakes to avoid when using flexible couplings?

Proper installation is crucial for the reliable and efficient performance of flexible couplings. Here are some common installation mistakes to avoid:

  • Incorrect Alignment: One of the most critical installation errors is improper alignment of the driving and driven shafts. Misalignment can lead to premature wear, increased vibration, and reduced power transmission efficiency. It is essential to align the shafts within the specified tolerances provided by the coupling manufacturer.
  • Over-Tightening: Applying excessive torque to the coupling’s fasteners during installation can cause damage to the flexible elements and decrease their ability to accommodate misalignment. It is essential to follow the recommended torque values provided by the coupling manufacturer to ensure proper clamping without over-tightening.
  • Improper Lubrication: Some flexible couplings may require lubrication of their flexible elements or moving parts. Failure to lubricate as recommended can lead to increased friction, wear, and reduced service life of the coupling.
  • Using Damaged Couplings: Before installation, it is crucial to inspect the flexible coupling for any signs of damage or defects. Using a damaged coupling can lead to premature failure and potential safety hazards. If any damage is detected, the coupling should be replaced with a new one.
  • Wrong Coupling Selection: Selecting the wrong type or size of the coupling for the application can result in inadequate performance, premature wear, and possible coupling failure. It’s essential to consider factors such as torque requirements, speed, misalignment compensation, and environmental conditions when choosing the appropriate coupling.
  • Ignoring Operating Conditions: Failure to consider the specific operating conditions, such as temperature, humidity, and exposure to corrosive substances, can lead to accelerated wear and reduced coupling lifespan. Choosing a coupling that is compatible with the operating environment is essential.
  • Ignoring Manufacturer Guidelines: Each flexible coupling comes with specific installation guidelines provided by the manufacturer. Ignoring these guidelines can lead to suboptimal performance and potential safety issues. It is crucial to carefully follow the manufacturer’s instructions during installation.

By avoiding these common installation mistakes and following best practices, the reliability, efficiency, and service life of flexible couplings can be maximized, leading to improved performance of the mechanical system as a whole.

flexible coupling

How does a flexible coupling handle torsional vibrations in rotating machinery?

A flexible coupling is designed to handle torsional vibrations in rotating machinery by providing a degree of flexibility and damping. Torsional vibrations are oscillations that occur in the drivetrain due to torque variations, sudden load changes, or other transient events. These vibrations can lead to resonance, excessive stress, and premature failure of components.

Flexible couplings mitigate torsional vibrations through the following mechanisms:

  • Torsional Compliance: Flexible couplings have an element, such as an elastomeric insert, that can deform or twist to absorb torsional shocks. When the drivetrain experiences torsional vibrations, the flexible element flexes, effectively isolating and dampening the vibrations before they propagate further.
  • Damping: Many flexible couplings have inherent damping properties, especially those with elastomeric components. Damping dissipates the energy of the torsional vibrations, reducing their amplitude and preventing resonance from occurring.
  • Tuned Design: Some flexible couplings are specifically designed with specific torsional characteristics to match the drivetrain’s requirements. By tuning the coupling’s stiffness and damping properties, engineers can ensure optimal torsional vibration control.
  • Torsional Stiffness: While flexible couplings provide flexibility to absorb vibrations, they also offer a degree of torsional stiffness to maintain the torque transmission efficiency between the shafts.

It is important to select the appropriate flexible coupling based on the specific torsional characteristics and requirements of the rotating machinery. Different applications may demand different types of couplings with varying levels of flexibility and damping. High-performance flexible couplings can effectively minimize torsional vibrations, protecting the drivetrain and connected equipment from excessive stress and potential damage.

Additionally, proper alignment of the flexible coupling during installation is crucial to ensure its optimal performance in mitigating torsional vibrations. Misalignment can introduce additional stresses and exacerbate torsional issues in the system. Regular inspection and maintenance of the flexible coupling will help identify any signs of wear or damage that may affect its ability to handle torsional vibrations effectively.

flexible coupling

Can flexible couplings handle misalignment between shafts?

Yes, flexible couplings are specifically designed to handle misalignment between shafts in rotating machinery and mechanical systems. Misalignment can occur due to various factors, including installation errors, thermal expansion, manufacturing tolerances, or shaft deflection during operation.

Flexible couplings offer the ability to compensate for different types of misalignment, including:

  • Angular Misalignment: When the shafts are not collinear and have an angular offset, flexible couplings can accommodate this misalignment by flexing or twisting, allowing the two shafts to remain connected while transmitting torque smoothly.
  • Parallel Misalignment: Parallel misalignment occurs when the two shafts are not perfectly aligned along their axes. Flexible couplings can adjust to this misalignment, ensuring that the shafts remain connected and capable of transmitting power efficiently.
  • Axial Misalignment: Axial misalignment, also known as end float or axial displacement, refers to the relative axial movement of the two shafts. Some flexible coupling designs can accommodate axial misalignment, allowing for slight axial movements without disengaging the coupling.

The ability of flexible couplings to handle misalignment is essential in preventing premature wear and failure of the connected equipment. By compensating for misalignment, flexible couplings reduce the stress on the shafts, bearings, and seals, extending the service life of these components and improving overall system reliability.

It is crucial to select the appropriate type of flexible coupling based on the specific misalignment requirements of the application. Different coupling designs offer varying degrees of misalignment compensation, and the choice depends on factors such as the magnitude and type of misalignment, the torque requirements, and the operating environment.

In summary, flexible couplings play a vital role in handling misalignment between shafts, ensuring efficient power transmission and protecting mechanical systems from the adverse effects of misalignment. Their ability to accommodate misalignment makes them indispensable components in various industrial, automotive, aerospace, and marine applications.

China Best Sales Best Coupling Manufacturer for PU Flexible Coupling  China Best Sales Best Coupling Manufacturer for PU Flexible Coupling
editor by CX 2024-02-19